—

Biconnected Components
An instructional graph algorithm

Graham Poulter

gpoul ter @s. uct . ac. za

Department of Mathematics and Applied Mathematics
University of Cape Town
4 August 2005

Presentation at SACO Final Training Camp for 101 2006 — p.1/1:

The Problem
— |

Given a connected graph G with n verticies and
m edges. We shall find, in O(n + m) time, the

® Biconnected components
® Separation vertices
® Separation edges

Presentation at SACO Final Training Camp for 101 2006 — p.2/1:

Definitions
)

© A separation vertex or edge Is one whose
removal disconnects G.

® A biconnected component is a maximal
biconnected subgraph of G. Edges and
non-separation vertices belong to exactly one
component, while separation vertices belong
to at least two.

® Biconnected components contain no
separation vertices or edges (nothing to
break it). Between any two vertices there
exists at least two disjoint paths, and GG has a
simble cvcle containina them. Freseaiona sacoinai maining camp or o1 2006 - pn

Example Graph

G

Separation vertex and edge are shown in red.

Presentation at SACO Final Training Camp for 101 2006 — p.4/1:

Equivalence Classes

—

® Edges e and f of G are said to be linked if

either e = f (they're the same edge) or G has
a simple cycle containing e and f.

® If e and f are linked, and f and g are linked,
then e and ¢ are linked (transitivity), because
you can construct a cycle around them. A set
of such mutually-linked edges forms an

equivalence class (each edge Is “equivalent”
to the others in the class).

® Each equivalence class corresponds to a
biconnected component of G.

inal Training Camp for 101 2006 5/1.

Auxiliary Graph
—_——————————————————————»

® Vertices in the auxiliary graph F' are edges in
(. We link vertices in I’ according to the link
relation: e and f are linked If G has a simple
cycle containing them.

© Each component of F' represents an
equivalence class, which tells us the edges in
the corresponding biconnected component of
G.

® Isolated vertices of F' are separation edges in
(. A separation vertex in G has adjacent
edges whose vertices In F are In different
different combonents

Algorithm Overview
—_——————————————————————»

® Do a Depth-First Search (DFS) on G, using it
to construct a proxy graph, F’, that contains
just enough links to have the same
components as F..

® On the next slide (the DFS tree for (),
back-edges are in dashed green, discovery
edges in bold red.

® Three slides from now (the proxy graph F”),
green vertices represent back-edges, and red
represents discovery edges.

DFS Representation

Presentation at SACO Final Training Camp for 101 2006 — p.8/1:

Constructing the Proxy Graph
—_——————————————————————»

® Visit vertices v in DFS order. For each
back-edge (u — v), link (u — v) to the
(unique) discovery edge (z — u). Traverse
backwards, linking (v — v) to ancestral
discovery edges, until encountering the “root”

vertex v.

® BUT: also stop after linking to a discovery
edge that has already been linked to. There Is
No need to carry on once you've joined up
with the rest of the equivalence class.

Proxy Graph F’

DO O O

OIOIIOD,

Proxy Graph Algorithm
——

for Vertices v of G in DFS order (start vertex s do
for all Back-edges e « (u,v) do
while v £ v do
f < Discovery edge (z, u)
F'.addEdge(e, f)
If f.linked = false then
f.linked « true
u <— =T
else

U <— v
end If
end while

Presentation at SACO Final Training Camp for 101 2006 — p.11/1.

References
—)

Q “Algorithm Design: Foundations, Analysis, and Internet Examples”
Michael T. Goodrich and Roberto Tamassia
John Wiley & Sons (2002)

http://ww3.algorithmdesign.net/handouts/Biconnectivity.pdf

Presentation at SACO Final Training Camp for 101 2006 — p.12/1.

http://ww3.algorithmdesign.net/handouts/Biconnectivity.pdf

	The Problem
	Definitions
	Example Graph
	Equivalence Classes
	Auxiliary Graph
	Algorithm Overview
	DFS Representation
	Constructing the Proxy Graph
	Proxy Graph F'
	Proxy Graph Algorithm
	References

