
Biconnected Components
An instructional graph algorithm

Graham Poulter

gpoulter@cs.uct.ac.za

Department of Mathematics and Applied Mathematics

University of Cape Town

4 August 2005

Presentation at SACO Final Training Camp for IOI 2006 – p.1/12



The Problem

Given a connected graph G with n verticies and
m edges. We shall find, in O(n + m) time, the

Biconnected components

Separation vertices

Separation edges

Presentation at SACO Final Training Camp for IOI 2006 – p.2/12



Definitions

A separation vertex or edge is one whose
removal disconnects G.

A biconnected component is a maximal
biconnected subgraph of G. Edges and
non-separation vertices belong to exactly one
component, while separation vertices belong
to at least two.

Biconnected components contain no
separation vertices or edges (nothing to
break it). Between any two vertices there
exists at least two disjoint paths, and G has a
simple cycle containing them. Presentation at SACO Final Training Camp for IOI 2006 – p.3/12



Example Graph

A

B

C

E

D F

G

Separation vertex and edge are shown in red.

Presentation at SACO Final Training Camp for IOI 2006 – p.4/12



Equivalence Classes

Edges e and f of G are said to be linked if
either e = f (they’re the same edge) or G has
a simple cycle containing e and f .

If e and f are linked, and f and g are linked,
then e and g are linked (transitivity), because
you can construct a cycle around them. A set
of such mutually-linked edges forms an
equivalence class (each edge is “equivalent”
to the others in the class).

Each equivalence class corresponds to a
biconnected component of G.

Presentation at SACO Final Training Camp for IOI 2006 – p.5/12



Auxiliary Graph

Vertices in the auxiliary graph F are edges in
G. We link vertices in F according to the link
relation: e and f are linked if G has a simple
cycle containing them.

Each component of F represents an
equivalence class, which tells us the edges in
the corresponding biconnected component of
G.

Isolated vertices of F are separation edges in
G. A separation vertex in G has adjacent
edges whose vertices in F are in different
different components. Presentation at SACO Final Training Camp for IOI 2006 – p.6/12



Algorithm Overview

Do a Depth-First Search (DFS) on G, using it
to construct a proxy graph, F ′, that contains
just enough links to have the same
components as F .

On the next slide (the DFS tree for G),
back-edges are in dashed green, discovery
edges in bold red.

Three slides from now (the proxy graph F ′),
green vertices represent back-edges, and red
represents discovery edges.

Presentation at SACO Final Training Camp for IOI 2006 – p.7/12



DFS Representation

A B
a

C

b
D

c

i

E

d

h

F

e

G

f

g

Presentation at SACO Final Training Camp for IOI 2006 – p.8/12



Constructing the Proxy Graph

Visit vertices v in DFS order. For each
back-edge (u→ v), link (u→ v) to the
(unique) discovery edge (x→ u). Traverse
backwards, linking (u→ v) to ancestral
discovery edges, until encountering the “root”
vertex v.

BUT: also stop after linking to a discovery
edge that has already been linked to. There is
no need to carry on once you’ve joined up
with the rest of the equivalence class.

Presentation at SACO Final Training Camp for IOI 2006 – p.9/12



Proxy Graph F ′

a

b c d e f

ghi

Presentation at SACO Final Training Camp for IOI 2006 – p.10/12



Proxy Graph Algorithm

for Vertices v of G in DFS order (start vertex s do
for all Back-edges e← (u, v) do

while u 6= v do
f ← Discovery edge (x, u)

F ′.addEdge(e, f)

if f.linked = false then
f.linked← true

u← x

else
u← v

end if
end while

end for
end for

Presentation at SACO Final Training Camp for IOI 2006 – p.11/12



References

“Algorithm Design: Foundations, Analysis, and Internet Examples”
Michael T. Goodrich and Roberto Tamassia
John Wiley & Sons (2002)

http://ww3.algorithmdesign.net/handouts/Biconnectivity.pdf

Presentation at SACO Final Training Camp for IOI 2006 – p.12/12

http://ww3.algorithmdesign.net/handouts/Biconnectivity.pdf

	The Problem
	Definitions
	Example Graph
	Equivalence Classes
	Auxiliary Graph
	Algorithm Overview
	DFS Representation
	Constructing the Proxy Graph
	Proxy Graph $F'$
	Proxy Graph Algorithm
	References

